NOWCASTING COMBINING RADAR AND LIGHTNING DATA

Rigo, T., C. Farnell, A. Del Moral, N. Pineda
Introduction
Introduction
Introduction
Introduction

Life cycle of a severe thunderstorm

Vertical cross section of the thunderstorm from the point of view of radar

- Total lightning flash rate

- Max hail size: 7 cm
- Max wind gust: 18.6 m/s

LJ warnings
- Strong wind gusts
- Hail size

Total lightning flash rate
Relationship between radar and lightning: tracking severe thunderstorms
Tracking severe thunderstorms

2 considerations:
- Good correlation between lightning and radar paths (GREEN ELLIPSE)
- Excepting for anomalous propagation of cells (RED ELLIPSE)
Tracking severe thunderstorms

2 considerations:
- Good correlation between lightning and radar paths (GREEN ELLIPSE)
- Excepting for anomalous propagation of cells (RED ELLIPSE)
Part I: nowcasting using weather radar
Anomalous motion of severe thunderstorms

Identification of anomalous motion of thunderstorms using daily rainfall fields

Anna del Moral1,4, María del Carmen Llasat4, Tomeu Rigo5

1Department of Atmospheric and Oceanography, University of Barcelona, c/Deiters 38, E-08038 Barcelona, Spain
4Meteorological Service of Catalonia, c/Berbòlic, 58-70, E-08025 Barcelona, Spain

2017-03-27 10:12 UTC
Anomalous motion of severe thunderstorms

Identification of anomalous motion of thunderstorms using daily rainfall fields

Anna del Moral a, b, María del Carmen Llasat a, b, Tomeu Rigo b

a Institute of Astronomy and Meteorology, University of Barcelona, c/Gran Vía 55, 08028 Barcelona, Spain
b Meteorological Service of Catalonia, c/Onze de Març, 38-40, 08025 Barcelona, Spain
Part II: nowcasting using lightning data
Lightning Jump

Adding total lightning information to radar

Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia

C. Farnell*, T. Rigo, N. Pineda
Meteorological Service of Catalonia, C/Blai, Barcelona, 38-48, Spain
Lightning Jump

Good correlation between LJ warnings and severe weather occurrence
Lightning Jump

Lead time

20 min - 1h 30 min
Lightning jump

Definition

☐ LJ is a sudden increase of the total lightning activity
☐ Associated with strong updrafts, this is, «powerful» charge separation (Williams 2001).
☐ Predictor of severe weather, defined as: Hail > 2 cm, downbursts, strong wind gusts, and tornadoes/waterspouts
☐ TOTAL Lightning is necessary: Cloud-to-ground (CG), plus Intra-cloud (IC)
☐ IC are essential (IC/CG is 1:10 in ordinary cells, 1:100 in severe)

(2006 – 2013) Only CG CG+IC (TL)

Nº warnings 6 630

Pineda et al. 2016
Part III: combining both nowcasting techniques
Merging radar and LJ

Improving nowcasting: radar animation (two examples)
Merging radar and LJ

Improving nowcasting: LJ, radar, and area affected

Lead time in both cases of ~ 2 h, distance LJ SevWea ~ 100 km
Merging radar and LJ

Improving nowcasting: radar reflectivity «trajectory»

High values of reflectivity in a large path, more or less wide
Merging radar and LJ

Improving nowcasting: past (dark) and post (light) areas

A straight path is not always observed!
Conclusions
Conclusions

- Radar and the nowcasting algorithm allows identifying past track and probable future directions…
- However, most of severe thunderstorms have anomalies in their trajectories (del Moral et al.)
- On the other hand, LJ algorithm has revealed as a good forecaster of severe weather with a lead time of 2 hours in some cases (Farnell et al.)
- The combination of both techniques seems to provide more information to forecasters
- In any case, the complete automation of the new technique is not recommended, suggesting the expertise of the human contribution
Hail campaign in Catalonia

Envie'ns una fotografia amb el #meteocatpedra

A través de les XOSSE amb el #meteocatpedra
Per WhatsApp al telèfon 611901992
Enviad un correu eлектrònic a xosse@meteo.cat

Qué cal incloure a la fotografia?

Geolocalització:
On s'ha fet

Referència de la mida:
Mesura-la o compara-la amb alguns objectes

Data i hora de quan s'ha preso l'imatge

Servei Meteorològic de Catalunya
Generalitat de Catalunya
Universitat de Barcelona
gencat.cat
Lightning jump

How it works

- Punctual observations converted to raster.
- Pixels with only one flash are removed
- Grouped by proximity, identified as «cells»

- Tracking of the «cell» position for the last 14 minutes (cell identified each minute)
- Tracks are reliable, because of the high time resolution
Lightning jump

Real examples