ON THE BIAS INTRODUCED BY THE AUTOMATIZATION OF TEMPERATURE OBSERVATION IN SPAIN

Aguilar, E.1, Gilabert, A.1, López-Diaz, J.A.2, Serra, A.3, Luna, Y.2, Prohom, M.3, Boroneant, C.1, Coll, J.R.1, Sánchez, J.C.2, Sigró, J1.

1.- Centre for Climate Change, C3, Universitat Rovira i Virgili de Tarragona
2.- Agencia Estatal de Meteorología, AEMET,
3.- Àrea de Climatologia, Servei Meteorològic de Catalunya, SMC
INTRODUCTION

- The change from conventional stations to automatic weather stations is happening routinely in many station networks across the world.
- One may expect more AWS-CON substitutions in the near future.
- These changes may be a source of inhomogeneity.
- The study of parallel measurements provides insights on the size, shapes and the suitability of different correction methods.

La Granadella Station. AWS instruments and conventional station. Picture: Servei Meteorològic de Catalunya.
OBJECTIVES OF THIS TALK

• Introduce the network prepared under the Spanish Grant CGL2012-32193

• Provide general statistics on the differences between AWS-CON measurements, provided by parallel measurements.

• Apply and evaluate different versions of the Quantile Match Algorithm (Trewin 2012) and different regression models to adjust the series
EXPERIMENT DESIGN

- Dataset Compilation
- Long series selection
- Outliers detection
- Segmentation
- Quality Control
- Model and validation sections
- Application of the models
- Analysis
Data have been provided by the Agencia Estatal de Meteorología, AEMET, and the Servei Meteorològic de Catalunya, SMC.

The raw dataset contains ~ 134,000 paired observations from 47 different stations, located all over Spain.

From the raw dataset, only those stations with at least 730 paired observations in both TX and TN were initially retained, for a total amount of 118,000 paired observations from 26 sites.

Some of the rejected stations and additional stations have the potential to complete the requested number of observations.

The dataset contains a similar number of paired precipitation paired observations, not yet analyzed.
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

RAW NETWORK STATISTICS

TX. Negative: 53.2 Zero: 12.8 Positive: 34 Abs. 0.5: 83

TN. Negative: 53.2 Zero: 23.4 Positive: 23.4 Abs. 0.5: 8

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
RAW NETWORK STATISTICS

TX. > 50: 74.5 >80: 31.9

TN. > 50: 72.3 >80: 38.3

Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
EXAMPLE AWS-CON RAW SERIES

TX, clear seasonal cycle; not apparent in TN, dominated by outliers.

Avilés.
EXAMPLE AWS-CON RAW SERIES

2867

Salamanca Apt.

Dominated by outliers,
no smaller seasonal cycle in TX

Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
EXAMPLE AWS-CON RAW SERIES

Murcia/San Javier.

Dominated by large inhomogeneities

Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

EXAMPLE AWS-CON RAW SERIES

Salamanca Apt.

Dominated by outliers, no smaller seasonal cycle in TX
QUALITY CONTROL

• Ran twice: before and after segmentation

• Detected values flagged and not used for analysis
 - Errors: \(t_{\text{max}} > t_{\text{min}} \) in any sensor
 - Hard limits: \(\text{abs}(t_x) \) or \(\text{abs}(t_n) > 50 \)
 - Combined limits: \(\text{abs}(t_x) \) or \(\text{abs}(t_n) > 40 \) and the difference between sensors is larger than 2\(^\circ\)C
 - Outliers: differences not included in \(p_{75}+4IQR \) and \(p_{25}-3IQR \)
HSP DETERMINATION

- Visual, cghseg and SNHT over AR1 on difference series.
- For some stations, supporting metadata has been facilitated
- Final decision: manual
- HSP have been identified
- Only HSP with at least 730 values have been retained for analysis.

SNHT detection over Barcelona Fabra. Metadata supports the last two breaks, which are retained.
METADATA AWS NURIA & SANT PAU

<table>
<thead>
<tr>
<th>Estación</th>
<th>Fecha</th>
<th>Tipo de Medida</th>
<th>Descripción del Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núria</td>
<td>6/15/1998</td>
<td>Datalogger</td>
<td>Installed Model MCV EM300</td>
</tr>
<tr>
<td></td>
<td>7/19/2007</td>
<td>Datalogger</td>
<td>Installed Model CAMPBELL CR1000</td>
</tr>
<tr>
<td></td>
<td>9/14/2005</td>
<td>Temperature Sensor</td>
<td>Installed Sensor code T057, model MCV STA-01</td>
</tr>
<tr>
<td></td>
<td>7/19/2007</td>
<td>Combined T/HR Sensor</td>
<td>Installed Sensor code HT359, model VAISALA HMP 45AL</td>
</tr>
<tr>
<td></td>
<td>5/15/1998</td>
<td>Rain Gauge</td>
<td>Installed Instrument code PT054, model MCV SLL-01</td>
</tr>
<tr>
<td></td>
<td>1/15/2003</td>
<td>Rain Gauge</td>
<td>Installed Instrument code PT066, model MCV SLL-01</td>
</tr>
<tr>
<td></td>
<td>5/28/2009</td>
<td>Rain Gauge</td>
<td>Installed Instrument code PT192, model THIES 5.4032.35.008</td>
</tr>
<tr>
<td></td>
<td>5/15/1998</td>
<td>Shelter</td>
<td>Installed MCV shelter</td>
</tr>
<tr>
<td></td>
<td>9/14/2005</td>
<td>Shelter</td>
<td>Installed Medium Stevenson Shelter, T/HR located inside</td>
</tr>
<tr>
<td></td>
<td>10/5/2011</td>
<td>Shelter</td>
<td>Installed Vaisala Shelter, T/HR located inside</td>
</tr>
<tr>
<td>Sant Pau de Segúries</td>
<td>11/24/1995</td>
<td>Datalogger</td>
<td>Installed Model MCV EM300</td>
</tr>
<tr>
<td></td>
<td>3/3/2007</td>
<td>Datalogger</td>
<td>Installed Model CAMPBELL CR1000</td>
</tr>
<tr>
<td></td>
<td>11/24/1995</td>
<td>Temperature Sensor</td>
<td>Installed Sensor code T041, model MCV STA-01</td>
</tr>
<tr>
<td></td>
<td>2/27/2003</td>
<td>Temperature Sensor</td>
<td>Installed Sensor code T183, model MCV STA-01</td>
</tr>
<tr>
<td></td>
<td>11/3/2005</td>
<td>Temperature Sensor</td>
<td>Installed Sensor code T084, model MCV STA-01</td>
</tr>
<tr>
<td></td>
<td>11/2/2006</td>
<td>Temperature Sensor</td>
<td>Installed Sensor code T077, model MCV STA-01</td>
</tr>
<tr>
<td></td>
<td>7/3/2007</td>
<td>Combined T/HR Sensor</td>
<td>Installed Sensor code HT385, model VAISALA HMP 45AL</td>
</tr>
<tr>
<td></td>
<td>1/16/2012</td>
<td>Combined T/HR Sensor</td>
<td>Installed Sensor code HT389, model VAISALA HMP 45AL</td>
</tr>
<tr>
<td></td>
<td>11/4/1995</td>
<td>Rain Gauge</td>
<td>Installed Instrument code PT044, model MCV SLL-02</td>
</tr>
<tr>
<td></td>
<td>11/26/2004</td>
<td>Rain Gauge</td>
<td>Installed Instrument code PT053, model MCV SLL-02</td>
</tr>
<tr>
<td></td>
<td>12/22/2008</td>
<td>Rain Gauge</td>
<td>Installed Instrument code PT169, model THIES 5.4032.35.007</td>
</tr>
<tr>
<td></td>
<td>2/18/2009</td>
<td>Rain Gauge</td>
<td>Installed Instrument code PT169, model THIES 5.4032.35.008</td>
</tr>
<tr>
<td></td>
<td>8/17/2011</td>
<td>Rain Gauge</td>
<td>Installed Instrument code PT169, model LAMBERT 00.15188.002051</td>
</tr>
</tbody>
</table>

Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop

Provided by SMC.
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
QUANTILE-MATCH ADJUSTEMENTS

- Following Trewin (2012) process for parallel measurements
- Determination of monthly normals for Site 1 and Site 2
- Linear Interpolation to daily normals
 - Modification: harmonics
- Anomalies to daily normals
- Define sample of observations for each month (usually, the same month, previous and following)
- Compute percentiles over the sample (with limit in 90, 95, 99)
- Add normals to percentiles and compute differences for site 1 and site 2 (Dmj)
 - Differences are smoothed with a loess filter

\[T_2 = T_1 + D_{m,j}, \text{ where } j \text{ is a value such that } TP_{1,m,j} \]
\[= T_1. \]
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop

ADJUST. FACTORS:
RAW vs LOESS FILTERED
REGRESSION MODELS

• To contrast with the QM adjustments, different regression model-based adjustments have been computed using as predictands the temperature at the CON site, its DTR, their quadratic transformations and their interactions with harmonics up to the 3rd degree.
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

QUADRATIC TERMS TX, DTR AND HARMONICS INTERACTION

QUADRATIC TERMS, TX AND DTR AS PREDICTANT

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
NETWORK PROB. AWS-ADJ /AWS-CON IN [-0.5°, +0.5°]

> 1 = IMPROVEMENT.

Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

QM75, loess, cut

QM95, loess, cut

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop

Simple regression with TX-CON as predictand
ADJUSTMENT EXAMPLES

TX, DTR as predictands; quadratic terms, interaction with Harmonics.

Determinación y ajuste del sesgo introducido por la automatización de las estaciones meteorológicas en las series climáticas.

Project CGL2012-32193
AWS-CON Bias in Spain.
9th Data Management Workshop
ADJUSTMENT EXAMPLES

1212E tn 1

Statistics

QM90
ADJUSTMENT EXAMPLES

QM90, Murcia/San Javier

Reduction in error, bias in median (negative diffs are more adjusted than positive ones)
ADJUSTMENT EXAMPLES

Very good adjustment.
CONCLUSIONS AND FURTHER WORK

- We investigate a dataset containing parallel measurements AWS-CON for Spain
- The QM adjustments described in Trewin (2012) provides good results, outperforming the applied regression models
- Some QM-Adjustments may introduce biases in the median (mean) difference.
- Detection of inhomogeneities in the difference is key for a good adjustment.
- Improve outliers detection We need to better understand why outliers are outliers
- Consider other adjustment models, including those using other variables to improve corrections
- Explore adjustments for precipitation
THANKS FOR YOUR ATTENTION