An early severe weather warning system in Meteorological Service of Catalonia.
Francesc Figuerola1, Montse Aran1, Carme Farnell1, Jordi Mateo1, Tomeu Rigo1, Santi Segala1
1Meteorological Service of Catalonia (SMC)
francesc.figuerola@gencat.cat

Motivation
Severe hail occurs 10 days per year in average in Catalonia, according to a SMC internal database (other severe weather phenomena has not been included).

Main Goal
Implementation of an early severe weather warning based on a Lightning Jump (LJ) algorithm adapted to Catalonia (Farnell et al., 2013) in order to forecast severe weather events.

Area of Study
Catalonia is located in the NE of the Iberian Peninsula. This area covers 32,000 km2.

Lightning jump: Technique, Results and Verification
Lightning data is analyzed every minute. Flashes are grouped in geo-referenced density matrix of 1x1 km2 cells.

Results and Verification

<table>
<thead>
<tr>
<th>LJ verification</th>
<th>Period</th>
<th>events</th>
<th>POD</th>
<th>FAR</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-20131</td>
<td>49</td>
<td>0.73</td>
<td>0.11</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>20162</td>
<td>69</td>
<td>0.94</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>20173</td>
<td>109</td>
<td>0.82</td>
<td>0.22</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>20183</td>
<td>146</td>
<td>0.88</td>
<td>0.19</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>20193</td>
<td>14</td>
<td>0.82</td>
<td>0.25</td>
<td>1.09</td>
<td></td>
</tr>
</tbody>
</table>

1Severe weather and small hail
2Only severe weather

The Severe Weather Warning System of the SMC and the Catalan Emergency Centre
SMC has developed a specific software to visualize LJ. It shows:
- LJ level (with or without flash multiplicity)
- time and position of every LJ
- a summary of whole electrical evolution.

Once a LJ warning is triggered, the software:
- estimates direction nowcasting of the storm with radar data (Rigo and Llasat, 2016). This nowcasting is overlaid at the map with concentric coloured circles.
-
Finally, forecaster analyses the different probability levels of occurrence in the next two hours.

Examples

18/09/2019
Large and vast hail Heavy rain

17/07/2019
Heavy rain Gusts wind

References